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Abstract
Purpose  To study if short-term exposure (2 h and 6 h) of endometrial/endometriotic tissues and cells to 10% seminal plasma 
(SP) can induce EMT/metaplasia.
Methods  Basic research experimental study was carried out in a University hospital-based fertility center. Semen sam-
ples, peritoneal fluid (PF) from endometriosis patients, endometrial biopsy from premenopausal women, immortalized 
endometriotic epithelial cell line (12Z), and immortalized endometrial stromal cell line (St-T1b) were studied. Rapid stain 
identification test (RSID), TGFβ1 immunofluorescence of washed sperms, TGFβ1-ELISA of SP and PF, in vitro study (2 h 
and 6 h incubation) and real-time PCR of endometrial tissue and cell lines to analyze gene expression of EMT/metaplasia 
markers and mediators were done.
Results  SP is still detectable in washed semen. TGFβ1 was expressed on the plasma membrane of the sperms and was sig-
nificantly more concentrated in SP (88.17 ng/ml) than PF. 10% SP induced an up-regulation of alpha smooth muscle actin 
expression in endometrial tissue (p = 0.008) and in 12Z cells (p = 0.05), mostly TGFβ1-independent. TWIST expression was 
persistently significantly down-regulated while Snail1 and 2 were up-regulated, though insignificant.
Conclusion  Our results provide novel evidence to support that even in semen washed twice, SP is still detectable. The 
changes in EMT/metaplasia markers and mediators give a new insight into a possible effect of SP on the pathogenesis of 
endometriosis.
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Introduction

Endometriosis is a puzzling disease, affecting up to 10–15% 
of women in their reproductive age [1, 2]. Notably, the prev-
alence of endometriosis is higher, reaching up to 40–50% in 
women suffering from chronic lower abdominal pain [3], 

causing a severe compromise in both physical and social 
lives of the patients.

The pathogenesis of the disease remains, however, 
unclear and at present several theories are being discussed. 
One of them is the metaplasia theory, stating that the coe-
lomic epithelium of the peritoneal cavity undergoes a meta-
plasia and develops into the two basic components of endo-
metriosis: endometrial glands and stroma [4, 5]. The loss of 
the epithelial markers (e.g., E-cadherin) together with the 
acquisition of mesenchymal markers (e.g., N-cadherin and 
vimentin) hallmarks an epithelial–mesenchymal transdiffer-
entiation (EMT) in endometriosis [6–8]. Although EMT is 
a physiological process during embryogenesis [9], it occurs 
also in pathological conditions; e.g., during fibrosis (e.g., 

Electronic supplementary material  The online version of this 
article (doi:https​://doi.org/10.1007/s0040​4-018-4965-4) contains 
supplementary material, which is available to authorized users.

 *	 M. G. Ibrahim 
	 mohamed.Ibrahim@ukmuenster.de; 

mgs_medicine@hotmail.com

Extended author information available on the last page of the article

http://orcid.org/0000-0001-6648-9281
http://crossmark.crossref.org/dialog/?doi=10.1007/s00404-018-4965-4&domain=pdf
https://doi.org/10.1007/s00404-018-4965-4


174	 Archives of Gynecology and Obstetrics (2019) 299:173–183

1 3

peritoneal dialysis-induced fibrosis) [4, 5] and tumor metas-
tasis [10].

In fibrosis, myofibroblasts predominate. They are trans-
formed fibroblasts which develop secondarily to tissue injury 
[11–13]. Myofibroblasts produce collagen I and fibronectin 
replacing lost extracellular matrix (ECM). Furthermore, they 
acquire cytoplasmic stress fibers to migrate to the injured 
tissue. Alpha smooth muscle actin (ASMA) is an integral 
part of these stress fibers [9, 14]. Those ASMA-expressing 
myofibroblasts are observed abundantly in endometriotic 
lesions of different locations. They point to a chronic tissue 
injury in EM lesions [15–21].

This myofibroblastic metaplasia in EM is largely medi-
ated by Transforming Growth Factor beta (TGFβ1) [12]. 
TGFβ1 is secreted abundantly in the endometrium, specifi-
cally in endometrial glands, stroma, and macrophages invad-
ing the endometrium [3, 22]. Its expression in the endo-
metrium is menstrual cycle phase-dependent, being higher 
around the time of menstruation to contribute to tissue repair 
following endometrial shedding [3].

However, in endometriosis patients, the concentration 
of TGFβ1 is consistently high in the peritoneal fluid (PF) 
[22–24]. This may be caused by the abundance of platelets 
in the endometriotic lesions, secondary to repetitive intral-
esional bleeding [25, 26] and/or by the mesothelial cells, 
secreting excess TGFβ1 [22]. TGFβ1 is likewise highly 
concentrated in the follicular fluid of ovaries affected by 
endometriotic cysts [27]. The same is observed in the uterine 
lavage of those patients [28]. The above findings emphasize 
the abundance of TGFβ1 in endometriosis patients.

Interestingly, TGFβ1 is a growth factor present in semi-
nal plasma (SP), and notably its concentration significantly 
exceeds all other biological fluids [29, 30]. TGFβ1 in SP 
plays a pivotal role in immuno-modulation. On one hand, 
it safeguards a maternal immune tolerance to the paternal 
antigens contained in the embryo. On the other hand, it acts 
as a pro-inflammatory factor, recruiting immune cells of the 
vaginal epithelium to contribute to a protection against infec-
tions with sexually transmitted diseases [29]. SP also acts as 
a vehicle for spermatozoa. The latter expresses TGFβ1 on 
their cytoplasmic membrane of the post-acrosomal area of 
their head, on the neck, and on the middle piece of their tail 
too. This TGFβ1 expression is enhanced by the acidic milieu 
of the vaginal secretion [31]. It is supposed that TGFβ1-rich 
SP can reach the uterine cavity directly after coitus [32], on 
the cytoplasmic membrane of the sperms [31] or through 
a haematogenous route [33]. Nevertheless, in humans it 
remains unclear if the SP can reach the uterine cavity.

In this study, we tried to answer the following questions: 
(1) whether SP and/or its TGFβ1 can be detected in washed 
semen (2) how much TGFβ1 is contained in SP as well as 
in PF of endometriosis patients, and (3) if SP as well as 
its TGFβ1 can induce EMT/metaplasia in endometrial and/

or endometriotic tissue. As we thought that SP is rapidly 
washed out of the genital tract after intercourse, we limited 
our incubation time in all our in vitro studies to maximum 
6 h.

Materials and methods

Detection of seminal plasma

To answer the question if SP can be detected in washed 
semen, a forensically validated test procedure (Rapid stain 
identification “RSID” semen, Galantos, Mainz, Germany 
[34]) was used for highly sensitive detection of semenogelin, 
the predominant protein in seminal plasma responsible for 
the formation of the gel matrix that encapsulates spermato-
zoa after ejaculation [35].

Semen samples were obtained (after at least 48 h absti-
nence) from men presenting for infertility work-up in the 
andrology department. Normozoospermia (n = 9), tera-
tozoospermia (n = 1), oligoteratozoospermia (n = 1), and 
azoospermia (n = 1) were all assessed according to WHO 
criteria 2010 [36], and within 60 min after ejaculation. Clini-
cal characteristics of the patients are listed in Supplemen-
tary Table 1. All liquefied semen samples (except the single 
sample with azoospermia) were then well mixed with 2 ml 
sperm preparation medium (SPM, Origio), then centrifuged 
at 2000 rpm for 10 min. The supernatant was then carefully 
aspirated and discarded. One milliliter of sperm prepara-
tion media (SPM) was cautiously layered over the pellet and 
incubated at 37 °C for 1 h (swim-up technique). In three 
samples we repeated this washing step twice. Afterwards, 
500 µLs from the upper layer of the SPM was aspirated and 
examined using the RSID. As a negative control (n = 2), 
200 µL of the SPM was provided. To show the presence of 
semenogelin in seminal plasma in the absence of spermato-
zoa, a sample from an azoospermic man (without undergo-
ing a swim-up technique) was transferred onto the fabric and 
allowed to air-dry. A small cutting of fabric (~2 mm2) was 
used for testing.

In the semen sample (azoospermia), washed semen sam-
ples (once or twice) and SPM (as a negative control) a ster-
ile cotton swab was dipped into 200–500 µL of the whole 
sample and then allowed to air-dry. The cotton batting was 
removed using laboratory clean technique, placed in a 1.5 ml 
microcentrifuge tube and extracted in 120 µL of RSID™ 
universal buffer. Samples were incubated in extraction buffer 
for 2 h at room temperature before applying 80–100 µL 
buffer into the sample window of the test cassette. Results 
are read after 10 min incubation time. Extraction negative 
controls were produced by extracting a clean and unused 
sterile swab directly alongside the body fluid swab samples.



175Archives of Gynecology and Obstetrics (2019) 299:173–183	

1 3

The rapid stain identification (RSID™) semen kits are 
lateral flow immunochromatographic strip tests designed 
for identifying semen from biological residue on forensic 
evidence. They are qualitative and results are recorded as 
either positive or negative based on the presence or absence 
of a visible single red line at the “Test” position by visual 
inspection of the strip test.

TGFβ1 immunofluorescence staining of washed 
sperms

To answer the question if TGFβ1 in SP can be detected in 
washed semen, an immunofluorescence staining was carried 
out as follows:

Semen samples were obtained (after at least 48 h absti-
nence) from normozoospermic men (n = 2) and assessed 
within 60 min according to WHO criteria 2010 [36]. After 
liquefaction, samples were centrifuged at 2000  rpm for 
10 min, the supernatant (rich in seminal plasma) was dis-
carded, and 1 ml Sperm Preparation Medium (Origio, Den-
mark) was layered carefully over the sperm pellet to carry 
out a swim-up preparation. After 1 h incubation at 37 °C in 
the incubator, the supernatant (rich in motile sperms) was 
pipetted out.

Sperms were then let to dry overnight on fibronectin-cov-
ered glass slides and then fixed with methanol for 10 min at 
− 20 °C. After washing with PBS, sperms were incubated at 
room temperature (RT) with PBS/Aurion BSAc for 30 min. 
Slides were then incubated with the primary antibody 
(human anti-TGFβ1 antibody, 8 µg/ml, MAB240, R&D, 
USA) for 1  h. After washing, the secondary antibody 
(Alexa488-coupled anti-mouse IgG, 1:500, Thermo Fischer 
Scientific, USA) was added for 30 min at RT in the dark. 
After washing, the nuclei were stained with 4, 6-diamid-
ino-2-phenylindole (DAPI) (1: 10,000, Sigma-Aldrich Co. 
LLC, USA) for 1 min, afterwards washed with PBS and 
then mounted with Vectashield (Vector Laboratories, USA). 
Slides were then left in dark for 2–3 h till hardening and 
were stored for short-term and long-term usage at 4 °C and 
− 20 °C, respectively. Sperm samples incubated with PBS 
without the primary antibodies were used as negative con-
trols. Protein localization was examined at a magnification 
of ×400 with a fluorescence microscope (Carl Zeiss Inc., 
USA).

Measurement of TGFβ1 concentration in SP and PF 
by Enzyme‑Linked Immunosorbent Assay (ELISA)

To measure the TGFβ1 level in SP in comparison to PF 
from endometriosis patients, an ELISA was carried out as 
following:

•	 Semen sample collection

Semen samples were obtained (after at least 48h absti-
nence) from normozoospermic men (n = 23) and assessed 
within 60 min according to WHO criteria 2010 [36]. After 
liquefaction, samples were centrifuged at 2000  rpm for 
10 min, and the supernatant was stored at − 80 °C for further 
use. After thawing at room temperature (RT), SP was pooled 
and filtered in 0.2 µm mesh and used for in vitro experiments 
in a 1:10 (10%) dilution.

•	 Peritoneal fluid sample collection

PF (n = 12) was collected intra-operatively during lapa-
roscopy (aspirated from the pouch of Douglas) from endo-
metriosis. PF was centrifuged (within 30 min after its collec-
tion) at 3000 RPM at 4 °C for 10 min. The supernatant was 
then collected, aliquoted, and stored at − 80 °C for further 
use, while the sediment was discarded. All patients were 
premenopausal [median age 32.4 (range 21–41 years old)] 
in the proliferative phase of the cycle. The patients had stage 
I (n = 5), stage II (n = 5), and stage III (n = 2) endometrio-
sis according to the revised classification of the American 
Society of Reproductive Medicine (rASRM) (Supplemen-
tary Table 2).

•	 Enzyme-linked immunosorbent assay (ELISA)

SP and PF were thawed at RT. TGFβ1 was measured in 
each single semen sample (n = 23) and in the pooled semen 
sample. The latter was further used for all other in vitro stud-
ies. The ELISA plate was coated overnight with capture anti-
body, then washed and subsequently blocked with ELISA 
diluent according to manufacturer’s manual (Human/mouse 
TGFβ1 ELISA Ready-SET-Go!, 2nd Generation, catalog 
number 88–8350, affymetrix, eBioscience, Germany). SP 
and PF were diluted 1:5 and then added to the plate wells 
and incubated for 2 h at RT. After repeated washing, the 
detection antibody was added to the plate wells and incu-
bated for another 1 h at RT. Again after repeated washing, 
avidin–HRP was added and incubated for another 30 min. 
Finally, plate wells were incubated with TMB solution then 
with stop solution and the plate was read at 450 nm with a 
spectrophotometer (Mutliskan FC, type 357, Thermo Fischer 
scientific, USA). Data were analyzed and plotted using the 
accompanying software (Skanit software 3.0, Thermo Fis-
cher Scientific, USA).

In vitro studies of effect of SP on EMT/metaplasia 
markers and mediators

To study a possible time-dependent EMT effect of SP on 
the endometrial/endometriotic tissues/cells, both endome-
trial biopsies as well as cell lines were incubated with SP 
1:10 (10%) for 2 h and 6 h at 37 °C. It is noticeable that the 
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undiluted SP is highly toxic to the endometrial cells in vitro 
[37]. The same was seen in our study, even with SP diluted 
down to 20% (data not shown), and so that 10% SP was used 
for the whole in vitro studies.

Gene expression of different EMT markers (Alpha 
Smooth Muscle Actin “ASMA”, vimentin, E-cadherin 
“CDH1”, N-cadherin “CDH2”, and fibronectin “FN1”) and 
EMT mediators (Snail1, Snail2, ZEB2, and TWIST) were 
studied by quantitative real-time PCR.

•	 Endometrial biopsy collection

An outpatient transcervical endometrial biopsy using 
a Probet catheter (Gynemed, Lensahn, Germany) on day 
10–12 (proliferative phase, n = 2) and on day 22–24 (secre-
tory phase, n = 2) of the menstrual cycle was carried out 
in premenopausal women presenting in the infertility clinic 
during routine work-up diagnostics as previously described 
[38] (Supplementary Table 3). The endometrial tissue was 
rapidly transferred into HEPES-buffered Dulbecco’s modi-
fied essential medium (DMEM)/F-12 (Invitrogen, Carlsbad, 
CA) to the lab for further in vitro studies.

•	 Cell lines

Two different cell lines were used, 12Z (immortalized 
endometriotic epithelial cell) [39] and St-T1b (immortal-
ized endometrial stromal cell line) [40]. Both were cultured 
in vitro at 37 °C till confluence in Dulbecco’s modified Eagle 
medium containing 10% FCS, 1% glutamine, insulin (5µg/
ml), and 1% penicillin/streptomycin in a humidified atmos-
phere of 7.5% CO2.

•	 Immunofluorescence characterization of both cell lines

To characterize both cell lines phenotypically, an immu-
nofluroscence study was carried out as follows: confluent 
cells on glass coverslips were washed once with PBS, fixed 
for 5 min with 3.7% PBS-buffered formaldehyde, followed 
by permeabilisation with PBS 0.1% Triton X-100. The sam-
ples were subsequently washed twice with PBS and were 
blocked with PBS and Aurion BSAc (1:10, Aurion, Neth-
erlands) for 20 min, and then incubated with monoclonal 
mouse anti-human alpha smooth muscle actin (ASMA) 
(1:100, clone 1A4, DAKO, USA), polyclonal rabbit anti-
human cytokeratin (1:100, wide-spectrum, abcam 9377, 
USA), and polyclonal rabbit anti-human vimentin (1:100, 
Santa Cruz, USA) for 60 min at RT. After repeated wash-
ing, the cells were incubated with the suitable secondary 
antibody anti-mouse IgG (1:500, Alexa Fluor 546, Thermo 
Fischer Scientific, USA) and anti-rabbit IgG (1:500, Alexa 
Fluor 488, Thermo Fischer Scientific, USA), respectively, in 
darkness for 1 h. The slides were then covered with DAPI 

Fluoromount-G (Southern Biotech, USA), mounted with 
glycerol/glycerin and then examined under the microscope 
(Zeiss Axiophot, USA).

•	 RNA isolation and reverse transcription

Isolation of RNA from cultured cells and endometrial 
biopsies was performed using the innuPREP RNA Mini 
Kit (Biometra, Germany) according to the manufacturer’s 
instructions. RNA quality was controlled photometrically at 
260 nm/280 nm. Reverse transcription of mRNA was per-
formed using the High capacity cDNA reverse transcription 
Kit (Applied Biosystems, Thermo Fischer Scientific, USA), 
using random hexamer primers and M-MuLV reverse tran-
scriptase according to the manufacturer’s instructions.

•	 Quantitative real-time polymerase chain reaction

Complementary DNA corresponding to 0.5 ng of total 
RNA was used as a template in a total reaction volume 
of 20 μl with Power SYBR Green PCR mix (Invitrogen, 
Thermo Fischer Scientific, USA) on an ABI PRISM 7300 
Sequence Detection System using the default thermal 
cycling conditions (denaturation at 95 °C for 10 min, fol-
lowed by 40 cycles of denaturation [95 °C, 15 s] and com-
bined annealing and extension [60 °C, 60 s]). Primers were 
added at 0.375 μM each. Calculations were based on the 
2−ΔΔCt method using beta actin as a housekeeping gene for 
normalization. Specificity of product formation was con-
trolled by melting curve analysis. Primer sequences are 
listed in Supplementary Table 4.

In vitro studies of effect of TGFβ1‑neutralization 
in the seminal plasma on EMT/metaplasia markers 
and mediators

To examine if the reported metaplastic effect of SP is mainly 
TGFβ1-mediated, an in vitro study was carried out but with 
neutralization of TGFβ1 in SP. Both cell lines were grown 
(as above) up to confluence, and then incubated with 10% 
SP together with anti-TGFβ1 antibody (monoclonal mouse 
IgG1, clone 9016, R&D Systems, USA) at a concentration 
of 9 µg/ml for 2 h and 6 h. Another group received only anti-
TGFβ1 antibody, while the control group was incubated in 
the ordinary culture media. RNA isolation, cDNA transcrip-
tion, and PCR were done as above for both EMT/metaplasia 
markers and mediators.

Statistics

Statistical analysis was performed using SigmaStat 3.1 and 
SPSS 15 software (SPSS, Chicago, IL, USA), using the 
Mann–Whitney rank sum test for immunohistochemical 
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staining analysis and Student’s paired t test for qPCR results. 
A p value of < 0.05 was considered statistically significant.

Results

Seminal plasma is detectable in washed semen

To determine if the seminal plasma is detectable upon swim-
up preparation of semen samples, we employed an assay for 
detection of semenogelin. Sperm Preparation Media (SPM) 
and the negative control reacted negative, as expected. All 
semen samples collected after swim-up reacted positive indi-
cating the presence of semenogelin. The azoospermic sam-
ple yielded a positive test reaction indicating the presence of 
semenogelin in seminal plasma even though no spermatozoa 
were present.

TGFβ1 is highly enriched in seminal plasma 
and expressed on the plasma membrane of sperms

To analyze the presence of the EMT-regulating cytokine 
TGFβ1 in sperm and seminal plasma, we analyzed its 
presence by immunofluorescence microscopy and ELISA, 
respectively. Immunofluorescence microscopy revealed that 
sperms expressed TGFβ1 on their plasma membrane of the 
head, neck, and tail regions. The negative control did not 
show positive signals (Fig. 1).

By ELISA, we could demonstrate that the SP contained 
a high amount of TGFβ1, with a mean concentration of 
92.88 ng/ml, which was not statistically different from the 
SP pool used later in the in vitro studies (88.17 ng/ml). 
TGFβ1 concentrations were almost 13,000-fold higher in 
SP in comparison to PF from endometriosis patients (Sup-
plementary Table 5).

10% SP induces up‑regulation of myofibroblastic 
metaplasia markers in the endometrial tissue

To determine the impact of 10% SP incubation on the 
expression of EMT markers and mediators in endome-
trial tissue, we employed a quantitative RT-PCR analysis. 
Regarding EMT/metaplasia markers, ASMA and fibronectin 
were significantly higher expressed after 2 h incubation in 
comparison to the control group (p = 0.008 and p = 0.003, 
respectively). Neither vimentin, E-cadherin nor N-cadherin 
showed any significant changes. After 6 h, ASMA was 
persistently higher expressed; however, as data were more 
variable, only a statistical trend was seen (p = 0.08). The 
same was observed for N-cadherin. Other markers remained 
unchanged.

Regarding EMT/metaplasia mediators, only ZEB2 
expression was significantly down-regulated after 2  h 
incubation (p = 0.0004). After 6 h, ZEB2 was significantly 
higher expressed (p = 0.004). The other mediators showed 
a tendency for higher expression, although not significant 
(Fig. 2).

10% SP induces EMT/metaplasia markers in the cell 
lines

Prior to studying the effect of 10% SP incubation on endo-
metriotic and endometrial cell lines, we performed a pheno-
typic characterization of their marker expression by immu-
nofluorescence microscopy. Vimentin was expressed in the 
cytoplasm both in 12Z and St-T1b cells, while cytokeratin 
was only expressed by 12Z cells, as expected for an epi-
thelial cell type. Very few single cells expressed cytoplas-
mic ASMA in the St-T1b cell line, while 12Z cells did not 
express ASMA at all (Supplementary Figs. 1, 2).

Fig. 1   TGFβ1 Immunofluorescence staining of washed sperms. a TGFβ1 is expressed on the plasma membrane of the head, neck, and tail 
regions of the sperms (green), while (b) a negative control shows only the DAPI-nuclear staining (blue)
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Incubation with 10% SP induced a high expression of 
ASMA in both 12Z and St-T1b cell lines after 2 h incu-
bation; however, surprisingly, data variability was higher 
compared to the impact on endometrial tissue (p = 0.05 
and p = 0.3, respectively). E-cadherin expression was, sig-
nificantly up-regulated in 12Z as well as in St-T1b cell 
lines (p = 0.04 and 0.01, respectively). Moreover, N-cad-
herin was statistically significantly down-regulated in the 
12Z cell line (p = 0.04).

Extending the incubation time to 6 h kept mean levels 
of ASMA high compared to controls, in both cell lines; 
however, due to high variability, data were not statisti-
cally significant. However, N-cadherin was significantly 
down-regulated in St-T1b cell line (p = 0.04). Except for 
a significant down-regulation of E-cadherin expression in 
the 12Z cell line (p = 0.03), all other markers did not show 
any remarkable changes in both cell lines.

Regarding EMT/metaplasia mediators, TWIST expres-
sion was persistently down-regulated in the 12Z and St-
T1b cell lines after 2 h and 6 h incubation with 10% SP 
(p = 0.007, 0.02, 0.01, and 0.0001, respectively). The other 
mediators (ZEB2, SNAIL1, and SNAIL2) showed a simi-
lar gene expression pattern in both cell lines. While their 

mean expression values were up-regulated compared to 
controls, the data were statistically insignificant due to 
high variability (Figs. 3, 4).

TGFβ1 neutralization in seminal plasma did 
not reverse the SP‑induced up‑regulation of EMT/
metaplasia markers

To determine if the effects of 10% SP on the expression of 
EMT markers and mediators were due to the presence of 
high TGFβ1 levels, we performed antibody neutralization 
experiments. Neutralization of TGFβ1 in 10% SP does not 
seem to affect the SP-induced EMT/metaplasia changes. 
In the 12Z cell line, adding an anti-TGFβ1 antibody to 
10% SP did not affect the down-regulation of N-cadherin 
expression (p = 0.04), allowing the cells to maintain 
expression of their epithelial markers (Fig. 5a). In the St-
T1b cell line, E-cadherin expression showed a persistent 
significant up-regulation even after adding anti-TGFβ1 
antibody (p = 0.002). While ASMA was down-regulated, 
the data did not reach statistical significance (Fig. 5b).

Fig. 2   Seminal plasma induces an up-regulation of EMT/metapla-
sia markers in endometrial tissue. A 2  h effect was evident in both 
ASMA and fibronectin gene expressions after incubation with 10% 
SP, along with down-regulation of ZEB2 gene expression. A 6  h 
effect showed an up-regulation of ASMA, yet insignificant. Moreo-

ver, ZEB2 gene expression was significantly higher expressed. Snail 1 
and 2 showed a tendency for up-regulation, but no noticeable changes 
in TWIST expression. Bars of standard deviation are shown here. 
ASMA alpha smooth muscle actin, FN1 fibronectin, CDH1 E-cad-
herin, CDH2 N-cadherin, SP seminal plasma
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Discussion

In our study, we provide novel evidence to support that even 
in semen washed twice, SP is still detectable. This may sup-
port the ascension theory of seminal plasma into the uterine 
cavity. Moreover, TGFβ1 either expressed on the plasma 
membrane of the sperms or being highly concentrated in SP 
is believed to get in direct contact with the endometrium by 
sperms reaching the uterine cavity. Furthermore, 10% SP 
induced a time-dependent, mostly TGFβ1-independent up-
regulation of some EMT/metaplasia markers in both endo-
metrial tissues as well as in endometriotic epithelial cells.

There is still much debate, whether or not SP reaches the 
uterine cavity in human. Previously, authors proposed differ-
ent routes by which SP might get in contact with the endo-
metrium. In a study on mice, an ascension/diffusion of SP 
through the cervical canal following mating was proposed as 
a possible route [32]. In our study, we used semen samples 
prepared by the swim-up technique to test this hypothesis. 
Swim-up technique is a common practice prior to intrauter-
ine insemination (IUI) or in vitro fertilization technique to 
treat infertility in human. The procedure mimics the function 
of the cervical canal and ensures not only the extraction of 
motile sperms but also a washing out of the seminal plasma. 

Surprisingly, in our study, SP was still detectable in washed 
semen after swim-up using the RSID semen procedure. 
RSID is a sensitive and established forensic tool for detect-
ing traces of SP in cases of alleged sexual assault, which can 
also be applied in the case of azoospermia.

Furthermore, another group described a hematogenous 
route through the uterine–ovarian counter-current system 
[33]. The latter supposed absorption of the different growth 
factors of SP into the blood vessels supplying the endome-
trium. A third group showed sperms expressing TGFβ1 on 
their plasma membrane [31], thereby acting possibly like a 
vehicle for the different growth factors in SP. The latter was 
reproduced in our study as well. All findings support the 
hypothesis that the SP can come in contact with the endo-
metrium in human.

How much SP can reach the endometrial cavity remains 
unclear. A concentration gradient of SP along the female 
genital tract was supposed. This was tested using TGFβ1 as a 
main growth factor in the SP. Interestingly, TGFβ1 increases 
by more than threefold in the uterine fluid following mat-
ing in mice to reach 6 ng/ml, while being 30 ng/ml in the 
ejaculate and 70 ng/ml initially in the seminal vesicles [33].

It is noticeable that the undiluted SP is highly toxic to the 
endometrial cells in vitro [37]. The same was seen in our 

Fig. 3   Seminal plasma induces EMT/metaplasia markers in the 
cell lines after 2  h incubation. 10% SP induced an up-regulation of 
ASMA gene expression after 2 h incubation in 12Z and St-T1b cell 
lines, though statistically insignificant. 12Z cells kept their epithelial 
markers as E-cadherin was up-regulated and N-cadherin was down-
regulated. A mesenchymal epithelial transdifferentiation (MET) was 

yet evident in St T1b cell line, as E-cadherin was significantly up-
regulated (p: 0.0118). TWIST was significantly down-regulated in 
both cell lines, while other mediators showed up-regulation, though 
insignificant. Bars of standard deviation are shown here. ASMA alpha 
smooth muscle actin, FN1 fibronectin, CDH1 E-cadherin, CDH2 
N-cadherin, SP seminal plasma
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study, even with SP diluted down to 20% (data not shown). 
This underscores the necessity of a concentration gradient of 
SP in the female genital tract, being most concentrated in the 
vagina and probably least concentrated in the endometrial 
cavity, and hence more tolerable by the endometrial cells.

In our study, it is evident that the TGFβ1 is highly 
enriched in SP. This was previously reported by other groups 
[29]. Although in endometriosis, many studies reported an 
increased TGFβ1 concentration not only in PF [22, 24, 41] 
but also in the uterine lavage [28]. According to our study, 
TGFβ1 in SP is concentrated still almost 13,000-fold higher.

Being a key player in endometriosis pathogenesis, TGFβ1 
has been the main focus of research in the last few years. It 
affects major biological steps in the disease pathogenesis. 
One of them is mediating EMT/metaplasia in endometriotic 
tissue [3]. TGFβ1 mediates a myofibroblastic metaplasia of 
the surrounding stromal cells and the fibroblasts. They are 
involved in tissue repair following tissue injury, and char-
acterized by abundance in ASMA expression to gain a free 
motility in the injured area [3].

In our study, 10% SP induced a myofibroblastic metapla-
sia of the endometrial tissue, characterized by up-regulation 
of ASMA expression. Surprisingly, this effect was evident 
just after 2 h incubation and persisted until 6 h, although at 
later time points a higher data variability resulted in lack 

of significance. For fibronectin, we observed a strong, but 
transient induction after 2 h, which decreased after 6 h. 
Indeed, transient induction of fibronectin by TGFβ1 has been 
previously described in fibrosarcoma cells, and has been 
attributed to activation of the JNK pathway [42]. Similar 
mechanisms may play a role in our experimental system. 
To our knowledge it is the first time to show an early effect 
of SP causing endometrial metaplasia. The same effect was 
observed in the endometriotic epithelial cell line.

Furthermore, an early up-regulation of fibronectin in 
the endometrium was evident, which is a typical feature of 
metaplasia, supporting cell migration and invasion [7, 43]. 
Nevertheless, a late effect was lacking.

The endometriotic epithelial cells showed a trend for 
undergoing an early myofibroblastic metaplasia, hallmarked 
by up-regulation of the ASMA expression. However, they 
retained their epithelial markers, where E-cadherin expres-
sion was up-regulated and N-cadherin was down-regulated. 
The lack of significance for several marker changes in 12Z 
cells is in contrast to the data obtained in endometrial tis-
sues, and may indicate that the effect of SP relies on an 
interplay between different cell types from the epithelial and 
stromal compartment, respectively.

Interestingly, the stromal cell line acquired an epithe-
lial marker, as E-cadherin expression was significantly 

Fig. 4   Seminal plasma induces EMT/metaplasia markers in the 
cell lines after 6  h incubation. 10% SP induced an up-regulation of 
ASMA gene expression after 6 h incubation in 12Z and St-T1b cell 
lines, though statistically insignificant. In the St-T1b cell line N-cad-
herin was persistently significantly down-regulated, along with an 
up-regulation of E-cadherin expression. The latter may point to a 

mesenchymal epithelial transdifferentiation. TWIST was significantly 
down-regulated in both cell lines, while other mediators showed up-
regulation, though insignificant. Bars of standard deviation are shown 
here. ASMA alpha smooth muscle actin, FN1 fibronectin, CDH1 
E-cadherin, CDH2 N-cadherin, SP seminal plasma
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up-regulated. The latter may refer to a unique mesenchymal 
epithelial transdifferentiation (MET), the reverse process of 
an EMT.

Although the origin of the myofibroblasts is still debat-
able [7], in our study they can be developed from the endo-
metriotic epithelial and endometrial stromal cells. While the 
detection of ASMA in the stress fibers would confirm and 
extend our results, in our study with the necessary short 
incubation times no changes on the cellular protein level 
is to be expected. Therefore, our study relied on testing the 
gene expression which mirrors the very early stage of EMT/
metaplasia-associated cellular changes.

Different EMT/metaplasia mediators were analyzed in 
our study. They showed a similar pattern of gene expression 
in both 2 h and 6 h incubation groups. We observed a signifi-
cant down-regulation of TWIST, whereas the other markers 

show an up-regulation, yet statistically insignificant. This 
observation may be linked to the E-cadherin up-regulation 
in stromal cell lines acquiring an epithelial marker.

In our study, neutralization of TGFβ1 in 10% SP could 
not reverse the SP-induced EMT/metaplastic changes. This 
may be explained, as SP contains other hormones (e.g., 
estrogen), growth factors (PDGF, HGF), and prostaglandins 
which can also mediate a metaplasia [44], which is an aspect 
worth exploring in future studies.

Conclusion

The detection of seminal plasma in the washed semen may 
support the ascension theory of seminal plasma into the 
uterine cavity in human. As TGFβ1 is not only abundantly 
expressed on the plasma membrane of the sperms, but also 
highly concentrated in seminal plasma, a contact of this 
growth factor with the endometrium following insemination 
is very likely. Expression of selected EMT/metaplasia mark-
ers in endometrial tissues, endometriotic and endometrial 
cells can be rapidly induced upon exposure to 10% SP and 
this effect is mostly TGFβ1-independent.
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