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A B S T R A C T

Endometriosis affects a large proportion of women during their reproductive years and is associated with
pain and infertility, also affecting psychological wellbeing and quality of life. The pathogenesis of the
disease remains unclear, although it is believed to be multifactorial. The endocannabinoid system (ECS)
consists of a number of ligands, receptors and enzymes, and has gained interests in endometriosis
research. This review aims to summarise all available evidence reporting the roles of the ECS in
endometriosis. A literature search of the PubMed, EMBASE, and Web of Science electronic medical
databases was performed. Original and review articles published in peer-reviewed journals were
included. No publication date or publication status restrictions were imposed. Significant differences in
the concentrations and expressions of the components of the ECS were reported in the eutopic and
ectopic endometrium, and the systemic circulation of women with endometriosis compared to controls.
Endometriosis appears to be associated with downregulation of CB1 receptors and upregulation of TRPV1
receptors. The role of CB1 and progesterone in anti-inflammatory action and the role of TRPV1 in
inflammation and pain are of particular interests. Furthermore, the ECS has been reported to be involved
in processes relevant to endometriosis, including cell migration, cell proliferation, apoptosis,
inflammation, and interacts with sex steroid hormones. The ECS may play a role in disease establishment,
progression, and pain in endometriosis. However, reports are based on studies of limited size and there
are inconsistencies among the definition of their control groups. There are also conflicting reports
regarding precise involvement of the ECS in endometriosis. Future research with larger numbers, strict
inclusion and exclusion criteria and detailed clinical information is imperative.

© 2019 Elsevier B.V. All rights reserved.
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Introduction

Endometriosis is defined as the presence of endometrial-like
tissue outside the uterus and it is accompanied by a chronic
inflammatory reaction. The prevalence of endometriosis is 10–15 %
among women of reproductive age, and it often causes symptoms
such as dysmenorrhoea, pelvic pain, dyspareunia, dyschezia and
infertility [1]. It significantly impacts the families, partners and
carers of those with endometriosis, as well as the social and
economic participation, physiological, mental and psychological
health of those affected [2,3].

The pathogenesis of endometriosis remains unclear. Several
theories including the Sampson’s theory of retrograde menstrua-
tion, coelomic metaplasia, differentiation of extrauterine/progeni-
tor cells originating from bone marrow, and lymphatic or
haematogenous dissemination have been proposed [4]. The
importance of hormones on endometriosis is well established,
as oestrogen and progesterone regulate the growth of endometrial
tissue by stimulating and inhibiting cell proliferation respectively
[4–6]. However it is likely that aetiopathogenesis of endometriosis
is multifactorial involving hormonal, genetic, biological and
environmental factors [7].

Currently, available treatments are not always effective and
recurrence following treatments is common [8]. The first-line
medical treatment such as combined oral contraceptives or
progestins is generally safe, effective and well tolerated, but
approximately 25 % of women will require intervention because of
inadequate treatment response or intolerance to adverse effects
[9]. Other medications including gonadotropin-releasing hormone
(GnRH) analogues, danazol and gestrinone may cause major
adverse effects substantially impacting on the quality of life [9]. An
ideal medical treatment would eliminate endometriotic lesions,
prevent recurrence and not impede ovulation with minimum side
effect profile. Consequently, novel therapies capable of accom-
plishing these are required.

In recent years, the endocannabinoid system (ECS) has gained
interests in endometriosis research. Endocannabinoids were first
discovered in 1992 [10]. Endocannabinoids and their receptors
are found through the body: in the brain, lungs, digestive system,
connective tissues, hormone releasing glands, skin/hair, bone, the
immune system, and the reproductive organs and influence
multiple metabolic pathways [11]. In the female genital system,
they are located in the endometrium, the myometrium, the
ovarian cortex and the medulla and the uterine tubes, and have
Table 1
The components of the endocannabinoid system and related molecules.

Endocannabinoids Receptors 

AEA CB1, CB2, TRPV1, GPR55
2-AG CB1, CB2 

Structural analogues of endocananbinoids
OEA PPAR, GPR119 

PEA PPAR, GPR55 

AEA: anandamide; TRPV1: transient receptor potential vanilloid type 1; NAPE-PLD: N-a
hydrolase; 2-AG: 2-arachdonoylglycerol; DAGL: sn-1-diacylglycerol lipase; MAGL: mo
activator receptor; PEA: N-palmitoylethanolamine.
important roles in menstrual cycle, ovarian maturation, embryo
transplantation and implantation [12–19]. Furthermore, the ECS
has been shown to affect specific mechanisms critical to
endometriosis establishment and maintenance including cell
migration, cell proliferation, cell survival and inflammation in
other systems [20–22].

Given the potential of the ECS to influence endometriosis
pathogenesis, this manuscript aims to summarise previous studies
to evaluate if pharmacological therapies targeting the ECS might be
considered for the management of endometriosis.

Materials and methods

A systematic search of the PubMed, EMBASE, and Web of
Science electronic medical databases was performed. Search terms
include those corresponding to endometriosis (endometriosis and
endometrioma) combined with terms describing ECS or its
components (endocannabinoid, THC, CB1, CB2, AEA, PEA, OEA,
MAGL, DAGL, NAPE and FAAH). Original and review articles
published in peer-reviewed journals in the English language were
identified. No publication date or publication status restrictions
were imposed. A manual cross-reference search of the eligible
papers was performed to identify additional relevant articles.

Results

The endocannabinoid system

TheECSismadeupofendogenousphospholipid-basedligands, their
molecular targets (two well-characterized G-protein–coupled cannabi-
noid receptors, CB1 and CB2), synthetic and degradation enzymes, and
protein transporters [23]. Endocannabinoids bind to the same receptors
as the principal biologically active component of Cannabis sativa,
D9-tetrahydrocannabinol (D9-THC). The most well characterised
endocannabinoids are anandamide (AEA) and 2-arachdonoylglycerol
(2-AG), and they act primarily at G-protein-coupled cannabinoid
receptors CB1 and CB2 (Table 1) [24,25]. The biological effects of AEA
and 2-AG are terminated by cellular uptake via a putative
endocannabinoid membrane transporter, followed by enzymatic
degradation. Endocannabinoids are synthesised on demand from
phospholipid precursors and are not stored [23]. AEA is produced
via at least four separate pathways with the most prominent via
cleavage of its precursor N-acyl-phosphatidylethanolamine (NAPE)
into AEA and phosphatidic acid by N-acyl-phosphatidyl
Synthesising enzymes Degrading enzymes

 NAPE-PLD FAAH
DAGL MAGL, FAAH

NAPE-PLD MAGL, FAAH
NAPE-PLD MAGL, FAAH

cyl-phosphatidyl ethanolamine-specific phospholipase D; FAAH: fatty acid amide
noacylglycerol lipase; OEA: N-oleoylethanolamine; PPAR: Peroxisome proliferator
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ethanolamine-specific phospholipase D (NAPE-PLD) (Fig.1) [26,27].
2-AG is also released on demand after conversion of diacylglycerol
by a sn-1-diacylglycerol lipase (DAGL) [28]. Both AEA and 2-AG are
degraded through the action of specific enzymes. AEA is predomi-
nantly metabolised to arachnidonic acid and ethanolamine by fatty
acid amide hydrolase (FAAH) [29]. 2-AG is predominantly degraded
by monoacylglycerol lipase (MAGL) and to a lesser extent by FAAH
[30,31].

Structural analogues of endocannabinoids with low affinities
for cannabinoid receptors such as N-oleoylethanolamine (OEA)
and N-palmitoylethanolamine (PEA) have been identified. These
compounds produce an “entourage effect” through being alterna-
tive substrates for FAAH and MAGL and thereby increasing the
potency of endocannabinoids [32,33].

In addition to the established cannabinoid receptors CB1 and
CB2, two putative CB receptors (GPR55 and GPR119) have been
identified [34]. Certain cannabinoid ligands interact with GPR55
with high affinity [35–37] while GPR119 can recognise OEA and
PEA [35].

The transient receptor potential vanilloid type 1 (TRPV1) and
transient receptor potential ankyrin-type1 (TRPA1) receptors are
structurally related ligand-gated Ca2+ permeable ion channels that
are considered as an integral part of the ECS [38]. They are
molecular integrators of a broad range of inflammatory stimuli
including prostaglandins and AEA and play crucial roles in pain and
inflammation [39]. Cannabinoid and TRPV1 receptors are often
found in the same organs, tissues and cells, where they can have
opposing or similar functions [40,41].

The endocannabinoid system in the endometrium

The ECS components are widely distributed in the human
endometrium throughout the menstrual cycle [19] and the uterus
is known to contain the highest concentrations of AEA within the
reproductive tract [42]. CB1 receptor immunoreactivity has been
reported to be more intense in the glandular epithelium compared
Fig. 1. Primary biosynthetic and degradation pathways of AEA and 2-AG. A)
N-acyltransferase (NAT) transfers a fatty acyl group derived from the Sn-1 position
of phospholipids, such as 1,2-sn-di-arachidonyolphosphatidylcholine (PC), to the
primary amino group of phosphatidylethanolamine (PE) to form N-acyl-phospha-
tidylethanolamine (NAPE). NAPE is catalysed by NAPE-hydrolysing phospholipase D
(NAPE-PLD) to form N-arachidonoylethanolamine (AEA). AEA degradation to
ethanolamine and arachidonic acid (AA) occurs primarily through hydrolysis of by
membrane-bound fatty acid amide hydrolase (FAAH). B) Phosphatidylinositol-4,5-
bisphosphate (PIP2) is hydrolysed to diacylglycerol (DAG) by phospholipase C (PLC).
DAG in turn is converted to 2-arachidonoylglycerol (2-AG) through the action of one
of two diacylglycerol lipase (DAGL) isozymes, DAGLα and DAGLβ. Degradation of 2-
AG to glycerol and AA occurs primarily through monoacylglycerol lipase (MAGL)
and to a lesser extent FAAH.
with the stroma and its expression in the glands was not regulated
throughout the menstrual cycle [19]. However, these findings are
in contrast with other studies which have reported an upregulation
of CB1 receptor mRNA and protein during the secretory phase
in endometrial samples obtained from women without endome-
triosis [43,44].

CB2 receptor expression in the glandular cells is significantly
higher in the proliferative phase compared to the secretory phase,
while its expression is similar in the stromal cells between the two
phases in women without endometriosis or adenomyosis [45].

The enzyme NAPE-PLD is upregulated in the menstrual, early-
proliferative and late secretory glands with its lowest levels in the
early secretory phase, and this enzyme is also found in the stroma
[19]. Glandular expression of the enzyme FAAH is upregulated
during the menstrual phase, downregulated in the early prolifer-
ative to the mid-secretory phase and then increased during the
late-secretory phase, with similar expression in the stroma [19].
The expressions of these two enzymes in the endometrium suggest
their critical role in controlling AEA concentration during the
menstrual cycle.

The endocannabinoid system in eutopic endometrium in women with
endometriosis

CB1 mRNA and protein are lower in the endometrial tissue from
women with endometriosis compared to controls, regardless of the
cycle phase [43]. This is in contrast with another study reporting no
difference in CB1 receptor expression during the proliferative
phase between patients with and without endometriosis [44].

There are no reports of significant difference in the expression
of NAPE-PLD and FAAH in the endometrium of patients with and
without endometriosis throughout the menstrual cycle [44].
TRPV1 receptor expression in the endometrium of women with
and without endometriosis are similar throughout the menstrual
cycle [44]. However, eutopic endometrium of subset of patients
with deep infiltrating endometriosis shows high levels of TRPV1
receptor mRNA compared to those without endometriosis [39].

The endocannabinoid system in ectopic endometrium (endometriotic
tissue)

It has been reported that the CB1 and CB2 receptors are equally
present in the epithelial and stromal cell lines derived from eutopic
endometrium and deep infiltrating endometriotic nodules [46].
This is in contrast with a more recent study reporting that CB1 and
CB2 receptor levels were significantly lower in endometriotic or
adenomyotic tissue compared to eutopic endometrium obtained
from those without endometriosis or adenomyosis [45]. Further-
more FAAH and NAPE-PLD levels decreased in endometriotic and
adenomyotic tissues compared to the control, suggesting that
synthesis and degradation of AEA become concomitantly slower in
both epithelial and stromal cells during disease pathogenesis, and
authors argued that FAAH enzyme rather than the CB1 or the
NAPE-PLD enzyme regulates endocannabinoid activity [45]. MAGL
and DAGL RNA and protein expression is decreased in glandular
and stromal cells in endometriosis and adenomyosis group
compared to that of the control group [45].

There was a remarkable elevation of TRPA1 mRNA expression in
the ectopic endometrium of rectosigmoid deep infiltrating
endometriosis lesions [39]. Furthermore significantly elevated
TRPV1 receptor mRNA level was detected in both ectopic and
eutopic endometrium of women with endometriosis [39]. Local
inflammation and sensory neural sprouting play a key role in the
pathogenesis of endometriosis-related pain, which is mediated by
a broad range of pro-inflammatory molecules [47,48]. These
stimulate TRPV1 and TRPA1 activity both on sensory nerve



Fig. 2. Major signalling pathways of the cannabinoid receptors. 2-arachido-
noylglycerol (2-AG) or N-arachidonoylethanolamine (AEA) signalling at the
cannabinoid receptors (CB1/2) results in activation of the associated Gαi/o subunit.
This is associated with downstream activation of phosphatidyl inositol 3 kinase
(PI3k) / protein kinase B (AKT) and extracellular signal-regulated kinase1/2 (ERK1/
2) pathways and decreased protein kinase A (PKA) activity via inhibition of adenyl
cyclase (AC). These pathways affect cell survival and apoptosis, growth, migration
and gene expression.
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terminals and non-neural structures, which in turn further trigger
the pain. TRPA1 and TRPV1 expressions were shown to have
correlations with the severity of pain symptoms, including
dysmenorrhoea, dyspareunia and dyschezia [39].

The endocannabinoid expression at the systemic level in women with
endometriosis

Plasma levels of endocannabinoids AEA, 2-AG and OEA are
significantly higher in the secretory phase compared to the
proliferative phase in patients with endometriosis. In the secretory
phase, plasma AEA and OEA levels were also significantly higher in
patients with endometriosis compared with controls. In contrast,
in patients without endometriosis, there is no difference in the
plasma levels of AEA, 2-AG, OEA and PEA between the proliferative
and secretory phase [44]. The increased systemic levels of AEA
detected in women with endometriosis during secretory phase
could be due to higher NAPE-PLD, lower FAAH levels or reduced
degradation of AEA, however there was no significant difference
in the transcript levels of NAPE-PLD and FAAH in women
with endometriosis compared to controls across the menstrual
cycle [44].

Endocannabinoid receptor signalling actions and consequences in
endometrial tissue: cell migration, cell proliferation, and apoptosis

The precise pathogenesis of endometriosis is unknown, but
mechanisms that allow endometrial cells to exit the uterine cavity,
implant and proliferate have been hypothesized. Therefore, cell
motility, adhesion, proliferation and apoptosis are cellular
behaviours especially relevant to endometiosis.

Synthetic endocannabinoid, methanandamide, stimulates
endometrial stromal cell migration in a dose-dependent manner
via CB1 and not via CB2 as indicated by the use of CB1 selective
antagonist AM251 (Table 2) [49]. This effect was mediated
through ERK1/2 and PI3K/Akt pathways as selective inhibitors of
both pathways can prevent the stimulatory effect of methanan-
damide (Fig. 2) [49]. An effect of endocannabinoids on endome-
trial cell migration has through a CB1-independent mechanism
[50]. Using the CB1 antagonist (SR141716A) and CB2 antagonist
(SR144528) and the GPR18 antagonist (CBD) it was shown that
SR144528 and CBD significantly attenuated the response to AEA,
suggesting a signalling mechanism mediated through CB2 and
GPR18 [50].

in vitro treatment of stromal endometriotic cells with
cannabinoid agonist (WIN 55212-2) decreased cell proliferation
associated with the inhibition of Akt suggesting cannabinoid
agonists exert anti-proliferative effects on endometriotic stromal
cells through the Akt pathway [46]. The in vivo effects of
cannabinoid agonist WIN 55212-2 were evaluated on nude mice
Table 2
Endocannabinoid receptor signalling actions and consequences in endometrial tissue.

Cell action Authors
Publication year

Number of samples ECS / pathw
involved

Migration Gentilini et al
2010

40 women undergoing
gynaecological laparoscopy

CB1
ERK1/2 pat

McHugh et al
2010

Human endometrial cell line CB2
GPR18

Proliferation Leconte et al 2010 14 women with DIE Cannabino
agonist
Akt pathw

Apoptosis Bilgic et al 2017 20 women with endometriosis CB1&2 

Inflammation Iuvone et al 2008 15 women with endometriosis CB2 

ECS: Endocannabinoid system, DIE: Deeply infiltrating endometriosis.
implanted with human deep infiltrating endometriotic nodules.
WIN 55212-2 abrogated the growth of endometriotic tissue
implanted in nude mice, suggesting the beneficial effects of
cannabinoid agonists on deep infiltrating endometriosis have been
confirmed in vivo [46].

The apoptotic cell index between endometriotic and adenomy-
otic patients and age-matched controls decreased significantly
compared to the control group [45]. CB1 and CB2 agonist mediated
dose-dependent, fast anti-proliferative and pro-apoptotic effects,
suggesting endocannabinoids increase apoptosis in endometriosis
and adenomyosis, and CB1 and CB2 antagonists can be considered
as potential therapeutic agents for these conditions.

The endocannabinoid system and inflammation in endometriosis

Local inflammation plays a key role in the pathogenesis of
endometriosis and endometriosis-related pain, which is mediated
by a broad range of pro-inflammatory molecules. Mast cells
produce and release a variety of degranulation products, such
as nerve growth factor, which may interact with nociceptive
ays Comments

hway
Synthetic endocannabinoid stimulated endometrial cell migration in a
dose-dependent manner
CB2 antagonist and GPR18 antagonist significantly attenuated the
response to AEA

id

ay

Cannabinoid agonist decreased endometrial cell proliferation

CB1 and CB2 agonist mediated dose dependent pro-apoptotic effects
Activation of CB2 is associated with the nitric oxide release process in
endometrial inflammation
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neurons causing their activation or sensitisation [51,52]. The
presence of increased activated and degranulating mast cells in
deeply infiltrating endometriosis, and the close histological
relationship between mast cells and nerves strongly suggest that
mast cells could contribute to the development of pain and
hyperalgesia in endometriosis [53].

In a study analysing CB1 mRNA and protein expression in human
endometrial tissues and mRNA expression in isolated stromal cells
after exposure to a substance triggering inflammation or a
progesterone receptor antagonist, the loss of CB1 was associated
with inflammation suggesting an anti-inflammatory action of
progesterone via CB1 [43]. It was shown that cannabinoid receptors
were present in inflammatory endometrial tissue, and selective
activation of CB2 was associated with the nitric oxide release process
existing in endometrial inflammation [54].

PEA may have an effect on inflammation by inhibiting the
activity of the pro-inflammatory enzymes such as COX, eNOS, and
iNOS [55] and by reducing mast cell activation in mice studies [56].

TRPV1 and TRPA1 receptors are important molecular integra-
tors of a broad range of inflammatory stimuli (protons, bradykinin,
prostaglandins, lipoxygenase products, anandamide, nitric oxide,
hydrogen peroxide, formaldehyde, methylglyoxal, acrolein and
reactive oxygen species (ROS)) and play crucial roles in pain and
inflammation (Fig. 3) [39].
Fig. 3. Major signalling pathways of GPR55 and TRPV1. A) Lysophophatidylino-
sitol (LPI), an intermediate of 2-AG biosynthesis, is the main endogenous ligand for
GPR55 which couples to Gα12/13 and signals through ras homolog gene family
member A (RhoA)/ Rho-associated protein kinase (ROCK)/phospholipase C (PLC)
pathways. RhoA/ROCK signalling results in Ca2+ release from intracellular stores.
Increased intracellular Ca2+ results in phosphorylation and activation of
extracellular-regulated protein kinase (ERK). These pathways affect cell survival,
growth, migration and differentiation. B) N-oleoylethanolamine (OEA) and N-
palmitoylethanolamine (PEA) and N-arachidonoylethanolamine (AEA) can activate
the transient receptor potential cation channel subfamily V member 1 (TRPV1).
When activated with a classical agonist, such as capsaicin, TRPV1 causes an
intracellular influx of Ca2+ and Na+ and consequently membrane depolarization.
This directly affects cellular proliferation, migration and release of inflammatory
cytokines and potentially cell death secondary to oxidative stress. Persistently
increased intracellular Ca2+ can also induce mitochondrial dysfunction.
The endocannabinoid system and endometriosis-related pain, quality
of life and sexual function

PEA is a shorter and fully saturated analogue of AEA, and is an
endogenous agonist of CB1. PEA accumulates during inflammation
and processes a number of anti-inflammatory actions and reduces
mast cell degranulation [57]. It has been reported to exert anti-
inflammatory and analgesic effects in both acute and neuropathic
pain conditions [58–60]. The presence of increased activated and
degranulating of mast cells in deeply infiltrating endometriosis,
and the close histological relationship between mast cells and
nerves strongly suggest that mast cells could contribute to the
development of pain and hyperalgesia in endometriosis [53].

There have been a number of studies and a meta-analysis
investigating the effects of PEA on endometriosis pain symptoms
and quality of life (Table 3) [61–66]. PEA in combination with
polydatin, a phytoalexin polyphenolic compound that down-
regulates inflammation, significantly decreased endometriosis-
related dysmenorrhoea, dyspareunia and pelvic pain compared to
placebo after 3 months [62]. Furthermore PEA with polydatin was
found to be as effective as hormonal therapies including
leuprorelin acetate (synthetic analogue of GnRH) and ethinyles-
tradiol + drospirenone in reducing endometriosis related pain
symptom without the anti-ovulatory effects [64]. A recent meta-
analysis evaluating clinical effectiveness of PEA with polydatin in
reducing endometriotic chronic pelvic pain concluded that it
resulted in clinically relevant improvement of chronic pelvic pain
and dysmenorrhoea while improving deep dyspareunia to a
limited degree [66].

PEA with transdatin resulted in significant improvement in both
mental and physical component of the SF-12 quality of life
questionnaire, while two hormonal therapy groups resulted in
significant improvement only in the physical component [64]. A
prospective study with 56 women assessed the effects of PEA with
transdatin on pain, quality of life and sexual function using the
visual analogic scale (VAS), quality of life questionnaire (SF-36),
Female Sexual Function Index (FSFI), and the Female Sexual
Distress Scale (FSDS) and reported improvement in pain symp-
toms, all categories of the SF-36 quality of life questionnaire and
FSFI and FSDS score by the 6th and 9th month [65].

The endocannabinoid system and sex steroid hormones

The role of progesterone
Progesterone is a steroid hormone produced predominantly

after ovulation by the corpus luteum and exerts its primary action
through the intracellular progesterone receptor. Exposure to
progesterone is recognised as protective against the development
of endometriosis [67], and studies suggest endometriosis results in
reduced progesterone expression [67–69].

Effect of progesterone on NAPE-PLD expression in the uterus
was examined using ovariectomised mice. It was reported that
progesterone down-regulates uterine NAPE-PLD expression, pos-
sibly leading to a decrease in AEA levels [70] although no
correlation has been established between AEA and progesterone
in normal cycling women [14].

The relationship between progesterone and ECS in the
endometrium of women with endometriosis has been explored.
2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD or dioxin) was shown
to cause progesterone-resistant cellular phenotype as a conse-
quence of reduced progesterone receptor expression in adult
endometrial stromal cells acquired from disease-free women [68].
The expression of CB1 mRNA and protein is increased during the
progesterone-dominant secretory phase in healthy human endo-
metrium, but the expression was minimal in the endometrial
tissue obtained from women with endometriosis regardless of the



Table 3
Effect of palmitoylethanolamide on symptoms of endometriosis.

Authors Publication year Number of women treated with PEA Treatment Results / Conclusions

Indraccolo 2010 4 women PEA 400 mg and transpolydatin 40 mg,
BD, 90 days

Pain relief as early as 1 month
Reduction in the analgesic drugs
requirement

Cobellis et al 2011 21 women PEA 400 mg and transpolydatin 40 mg,
BD, 3 months

A marked decrease in dysmenorrhoea,
dyspareunia and pelvic pain

Giugliano 2013 47 women PEA 400 mg and transpolydatin 40 mg,
BD, 90 days

Pain intensity decreased significantly

Di Francesco et al 2014 10 women PEA 400 mg and transpolydatin 40 mg,
BD, 6 months

Pain symptom intensity significantly
decreased
As effective as hormonal therapy in
reducing pain
Quality of life (both physical and mental
component)
scores improved significantly compared to
baseline

Caruso et al 2015 56 women PEA 300 mg and α-lipoic acid 300 mg,
BD, 9 months

Pain symptoms and quality of life improved
significantly by the 6th month

Indraccolo et al 2017 Meta-analysis PEA 400 mg and transpolydatin 40 mg,
BD, 3 months

Clinically relevant improvement of chronic
pain and dysmenorrhoea
Deep dyspareunia was improved to a
limited degree

PEA: Palmitoylethanolamide, BD: Twice a day.
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cycle phase, suggesting that endometriosis patients exhibit
alterations in cannabinoid responsiveness [43].

Progesterone treatment of the proliferative endometrial
stromal cells led to a significant increase in expression of CB1
mRNA, and progesterone receptor antagonist (onapristone) largely
prevented this effect. The use of proliferative phase stromal cells
without a prior exposure to progesterone in vivo coupled with the
use of onapristone to block progesterone action in vitro confirm
progesterone’s involvement in regulating CB1 expression in
human endometrial stromal cells (Fig. 4) [43].

The role of oestrogen
The effects of oestrogen on cell migration was evaluated using

human endometrial cancer cell lines, and it was found that cell
migration was enhanced by oestrogen, but not modified by
progesterone [71,72]. This capability of human endometrial cells to
migrate in response to oestrogen relates to the oestrogen-
dependence of endometriosis [5].
Fig. 4. Modulation of ECS by sex steroid hormones. Termination of AEA signalling is tho
putative endocannabinoid membrane transporter (EMT) and subsequent degradation 

Progesterone and signalling increases FAAH activity through up-regulation of the FAAH 

downregulates N-acyl-phosphatidylethanolamine- hydrolysing phospholipase D (NAPE-P
cannabinoid receptor 1 (CB1) mRNA expression.
Effect of oestrogen on NAPE-PLD expression in the uterus was
examined using ovariectomised mice. It was reported that
oestrogen down-regulates uterine NAPE-PLD expression, suggest-
ing that it induces a decrease in AEA levels [70]. A separate study
also involving ovariectomised mice reported that oestrogen
significantly decreased activity of FAAH compared with untreated
controls [73].

The highest plasma AEA levels were measured at ovulation and
the lowest level was measured in the late luteal phase, and there
was a statistically significant positive correlation between AEA and
oestradiol level, suggesting it may be involved in the regulation of
AEA levels [14].

Comment

Significant differences in the concentrations and expressions of
the components of the ECS were reported in the eutopic and
ectopic endometrium, and the systemic circulation of women with
ught to occur through cellular uptake of N-arachidonoylethanolamine (AEA) via the
to AA (arachidonic acid) and ethanolamine by fatty acid amide hydrolase (FAAH).
promoter via the transcription factor Ikaros. Progesterone and oestrogen signalling
LD) expression and consequently AEA production. Progesterone signalling increases
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endometriosis compared to controls. Although there are conflict-
ing reports regarding the role of the ECS in endometriosis,
endometriosis appears to be associated with downregulation of
CB1 receptors and upregulation of TRPV1 receptors.

The importance of downregulation of CB1 receptors in
endometriosis is highlighted by the study reporting the association
between the loss of CB1 and inflammation suggesting an anti-
inflammatory action of progesterone via CB1. Endometriotic
lesions are surrounded by inflammation. The association between
a reduction in CB1 and inflammation may also suggest that
endometriotic lesions are likely to have reduced ECS expression.
On the other hand, if progesterone response is down regulated in
ectopic tissue it may result in decrease in ECS activity. A developed
progesterone resistance in endometriotic lesions could influence
the endocannabinoid responsiveness. This would mean that
treatment might be relevant for certain lesions/people and the
potential for personalised medicine.

The finding of upregulation of TRPV1 receptors in endometri-
osis seems particularly relevant, as endometriosis is characterised
by its inflammation and associated pain symptoms and TRPV1
receptors are known to play important roles in pain and
inflammation. Poor association between a wide range of pheno-
types or pain symptoms and the severity of the disease on
laparoscopy may be due to the TRPV1 activity.

It is worthwhile noting that the ECS is significantly influenced
by genetic variants [74] with a suspected genetic influence on the
ECS contribution to neurological development [75]. Analysis of
data from the Gtex portal indicates that expression quantitative
trait loci (eQTL), genetic variants that occur in the population
across the whole genome, exist for crucial genes in the ECS in a
number of different tissue. Moreover, studies have shown
variation in the occurrence of side effects for exogenous
compounds may occur depending on the genetic variants in
FAAH enzyme [76].

Further research with pre-defined strict inclusion and exclusion
criteria ensuring the details of patients’ characteristics and clinical
information is required to investigate the exact roles of the ECS in
endometriosis. There is a reasonable body of evidence supporting
the efficacy of PEA in managing endometriosis-related symptoms.
More in vivo studies need to be conducted to have a clinical value,
and CB1 and TRPV1 may be a potential target for future molecular
therapy. Finally, as the ECS is implicated throughout the human
body, the development of biomarkers to identify suitable patients
predicting the maximum benefit and the low side effect profile
may be imperative.
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